Affinity-Preserving Random Walk for Multi-Document Summarization

نویسندگان

  • Kexiang Wang
  • Tianyu Liu
  • Zhifang Sui
  • Baobao Chang
چکیده

Multi-document summarization provides users with a short text that summarizes the information in a set of related documents. This paper introduces affinitypreserving random walk to the summarization task, which preserves the affinity relations of sentences by an absorbing random walk model. Meanwhile, we put forward adjustable affinity-preserving random walk to enforce the diversity constraint of summarization in the random walk process. The ROUGE evaluations on DUC 2003 topic-focused summarization task and DUC 2004 generic summarization task show the good performance of our method, which has the best ROUGE2 recall among the graph-based ranking methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Aspect-Driven Random Walk Model for Topic-Focused Multi-document Summarization

Recently, there has been increased interest in topic-focused multi-document summarization where the task is to produce automatic summaries in response to a given topic or specific information requested by the user. In this paper, we incorporate a deeper semantic analysis of the source documents to select important concepts by using a predefined list of important aspects that act as a guide for ...

متن کامل

Decayed DivRank for Guided Summarization

Guided summarization is essentially an aspect-based multi-document summarization, where aspects can be taken as specified queries in summarization. We proposed a novel ranking algorithm, Decayed DivRank (DDRank) for guided summarization tasks of TAC2011. DDRank can address relevance, importance, diversity, and novelty simultaneously through a decayed vertex-reinforced random walk process in sen...

متن کامل

Improving the Performance of the Random Walk Model for Answering Complex Questions

We consider the problem of answering complex questions that require inferencing and synthesizing information from multiple documents and can be seen as a kind of topicoriented, informative multi-document summarization. The stochastic, graph-based method for computing the relative importance of textual units (i.e. sentences) is very successful in generic summarization. In this method, a sentence...

متن کامل

Single Document Keyphrase Extraction Using Label Information

Keyphrases have found wide ranging application in NLP and IR tasks such as document summarization, indexing, labeling, clustering and classification. In this paper we pose the problem of extracting label specific keyphrases from a document which has document level metadata associated with it namely labels or tags (i.e. multi-labeled document). Unlike other, supervised or unsupervised, methods f...

متن کامل

Privacy-Preserving Multi-Document Summarization

State-of-the-art extractive multi-document summarization systems are usually designed without any concern about privacy issues, meaning that all documents are open to third parties. In this paper we propose a privacy-preserving approach to multi-document summarization. Our approach enables other parties to obtain summaries without learning anything else about the original documents’ content. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017